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Abstract
Random coefficient regression (also known as random effects, mixed effects,
growth curve, variance component, multilevel, or hierarchical linear modeling)
can be a natural and useful approach for characterizing and testing hypotheses
in data that are correlated within experimental units. Existing power and sam-
ple size software for such data are based on two variance component models or
those using a two-stage formulation. These approachesmay bemarkedly inaccu-
rate in settings where more variance components (i.e., intercept, rate of change,
and residual error) are warranted. We present variance, power, sample size for-
mulae, and software (R Shiny app) for use with random coefficient regression
models with possible missing data and variable follow-up. We illustrate sample
size and study design planning using data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. We additionally examine the drivers of
variability to better inform study design.

KEYWORDS
growth curve, mixed effects model, mixed model with repeated measures, random coefficient
regression model, statistical power

1 INTRODUCTION

Laird andWare (1982) introduced the two-stage randomeffectsmodel, which has led to a rich body of research into random
effects and mixed effects modeling (Diggle et al., 2002; Fitzmaurice et al., 2012). The random coefficient regression model
(RCRM), a special case of the random effects model with time as a continuous covariate, has been a useful method for
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modeling longitudinal data with correlations within experimental units of interest. It has been employed in an array of
research areas (Curran et al., 2010; Diggle et al., 2002; Fitzmaurice et al., 2012; Gelman & Hill, 2006; Harrison et al., 2018)
and in regulatory settings such as the U.S. Food and Drug Administration (FDA) approval on nintedanib in idiopathic
pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease (Flaherty et al., 2019; Richeldi et al., 2014).
Power and sample size formulae for RCRMs have historically been approximated by variance component models con-

taining two components or motivated by a two-stage formulation (longpower, Donohue et al., 2013; EaST, East 6, 2020).
While these approaches may be useful in some settings, they can markedly over- or underestimate power and sample
size in more general settings where more variance components (i.e., intercept, rate of change, and residual error) are war-
ranted (Fitzmaurice et al., 2012). Extensive work has been done based on longitudinal modeling frameworks other than
the RCRM. For example, Roy et al. (2007) use the general matrix notation to provide the sample size formulae under
the three-level (center, experimental group, and subject) mixed effects modeling framework; Heo and Leon (2009) also
present the sample size formulae assuming no dropout in the experimental design under the three-level modeling frame-
work; Hedeker et al. (1999) derive the sample size needed when the model treats assessment time points as categorical.
We assume a parallel-arm repeated measure experimental design with two experimental levels that can be adequately

described with constant rates of change over time or as a first-order approximation of a potentially nonlinear model. The
remainder of this article is organized as follows. In Section 2, we describe the RCRM and its underlying assumptions. In
Section 3, we provide the covariance matrix for the fixed effects in the RCRM with and without missingness (at random)
and in the special case of equally spaced design points; we provide insights on how model parameters might inform the
experimental design; we also compare the RCRM variance with other commonly used longitudinal model variances. In
Section 4, we present a power expression based on the covariancematrix presented in Section 3 and in Section 5, the result-
ing sample size formula. Section 6 contains simulations to assess the sensitivity of our power formula to various factors
including sample size, the correlation between intercept and rate of change random effects, missing data, nonnormality,
and nonlinearity. In Section 7, we illustrate in detail how the sample size formula can be applied and how more efficient
experiments might be designed. A discussion follows in Section 8.

2 RCRMMODEL CONSTRUCTION

Throughout this article, for illustration purposes, we assume two experimental levels: a control group and an experimental
group from a randomized experiment such as a clinical trial. We construct the RCRM assuming constant rates of change
in both the control and experimental groups as follows:

𝑌𝑖𝑗 = 𝛼 + 𝑢0𝑖 +
(
𝛽 + 𝛽𝑥𝐼𝑥,𝑖 + 𝑢1𝑖

)
𝑡𝑗 + 𝜀𝑖𝑗, (1)

where 𝑌𝑖𝑗 is the continuous outcome measure for subject 𝑖 at the 𝑗th visit, defined for subjects 𝑖 = 1, 2, … ,𝑁, 𝑗 =
0, 1, 2, … , 𝑘𝑖 ⩽ 𝐽, and 𝑡0 ≡ 0 & 𝑡𝐽 ≡ 𝑇 (time at the last visit among all subjects). Note that 𝑗 = 0 represents the baseline
visit. In randomized clinical trials, the schedule of postbaseline visits is usually preplanned and is the same for all experi-
mental units (or subjects as we will refer to them going forth). Therefore, the assessment times are not subject dependent.
In an ideal setting where every subject finishes all assessments, 𝑡𝑘𝑖 = 𝑡𝐽 = 𝑇, for 𝑖 = 1, 2, … ,𝑁.
The intercept 𝛼 is the overall baseline population mean, which is assumed to be the same between experimental and

control groups. This assumption is reasonable for randomized experiments where overall balance at baseline is achieved
with randomization (Rosenberger & Lachin, 2015). The same assumption is made in the constrained longitudinal data
analysis (cLDA)model (Liang& Zeger, 2000) where timepoints aremodeled as categorical. The 𝐼𝑥,𝑖 is an indicator variable
(where “x” is short for “treatment,” or more generally “experimental”) that is defined as

𝐼𝑥,𝑖 =

{
1, if subject 𝑖 is in treatment (experimental) group

0, otherwise.

The random effect vectors {
[
𝑢0𝑖, 𝑢1𝑖

]𝑇
} are 2 × 1, and are assumed to be independent and identically distributed (i.i.d.)

zero-mean normal vectors with 2 × 2 covariancematrix 𝑅 =

[
𝜎2𝛼 𝜌𝜎𝛼𝜎𝛽
𝜌𝜎𝛼𝜎𝛽 𝜎2

𝛽

]
. The parameter 𝜌 is the correlation between
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𝑢0𝑖 and 𝑢1𝑖 . The parameter 𝛽 represents the constant rate of change for the control group population, whereas 𝛽𝑥 denotes
the treatment benefit in slowing the rate of change. The rate of change for the experimental group population is then
𝛽 + 𝛽𝑥. The {𝜀𝑖𝑗} are i.i.d. pure errors with mean zero and variance 𝜎2, representing the variation within the experiment
unit. We further assume that the random effect vectors and the pure errors are independent.
For simplicity of the methodological development, we assume the only two variables in the model are time and group

information. Other covariates could be easily incorporated into the results throughout the article, however, in practice,
it will be sufficient to use parameter and variance component estimates (using available data) in the power and sample
size formulae that have been modeled using the same covariates expected in the planned experiment. When adjusting
for the desired covariates is not possible, these results will be slightly conservative and, in many cases, negligibly so.
The model presented in Equation (1) treats the response variable change over time linearly in both the experimental
and control groups. This can often be justified, especially in cases where the outcome variable changes slowly over time.
The linear function in time 𝑡 can also be viewed as a first order Taylor expansion of any true trajectory. We note that
the RCRM can be generalized by adding higher order terms in time, and the results in this article can be generalized
accordingly.
We further assume monotone missingness, defined as missing subsequent assessments after the first missingness

occurs; this is also the assumption made in Lu et al. (2008). Granted, this assumption is not absolutely necessary for
the methodological development in this article; however, the assumption is usually an appropriate approximation in clin-
ical settings. The assumption also helps produce a both succinct and practical power and sample size formulae. Lastly, we
assume themissing data are missing at random, so that the likelihood-based statistical inference we draw from the RCRM
is valid (Little & Rubin, 2019).
Since the parameters 𝑢0𝑖 and 𝑢1𝑖 are both random variables, the model described in Equation (1) is classified as a ran-

dom effects model (Diggle et al., 2002). Further, 𝑢0𝑖 enters in as an intercept coefficient (or baseline; we will treat them
interchangeably) and 𝑢1𝑖 enters in as a rate of change coefficient (or slope; we will treat them interchangeably), hence the
name “random coefficient” in RCRM. The pure error 𝜀𝑖𝑗 contributes to thewithin-subject variability; the random variables
𝑢0𝑖 and 𝑢1𝑖 contribute to the between-subject variability.

3 COVARIANCEMATRIX OF RCRM ESTIMATORS

We start this section by presenting the results wherewe assume all subjects have all assessments up until 𝑡𝑘 (𝑘 ≥ 1) with no
missing values. The results show the explicit form of the covariance matrix of the RCRMmaximum likelihood estimators
(MLEs), with the focus on the treatment effect estimator. We examine how the timing of the assessments affects the
variance of the treatment effect estimator. We also provide comparisons between the RCRM variance and other popular
longitudinal model variances. We close this section by extending the covariance matrix of the RCRM estimators to the
more general context of monotone missing data.
Similar to what has been done in Lu et al. (2008), we also assume that all the variance components 𝜎2𝛼, 𝜎2𝛽 , 𝜌, and 𝜎

2 are
known in the subsequent derivation. We start from the simple case where all subjects have exactly the same assessment
times without missing values; the covariance matrix of the RCRMMLE is stated in Lemma A1; see Appendix A.1.
Using Lemma A1, the variance of the RCRM treatment effect estimate is

var
(
𝛽𝑥

)
=
(𝑚 + 𝑛
𝑚𝑛

)
×
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽

(
1 − 𝜌2

)(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)
(𝑘 + 1)

[
𝜎2𝒕2

{𝑘}
+ (𝑘 + 1)𝜎2𝛼

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)] , (2)

with

𝒕2
{𝑘}
=

1

𝑘 + 1

𝑘∑
𝑖=0

𝑡2
𝑖
and 𝒕{𝑘} =

1

𝑘 + 1

𝑘∑
𝑖=0

𝑡𝑖,

where 𝑚 and 𝑛 are the sample sizes of the experimental group and control group, respectively. When 𝑘 = 𝐽, Equation
(A.1) in Appendix A.1 provides the covariance matrix as a special case where all subjects finish all assessments in the
experiment without any missing values. From Equation (A.1), both the sum of assessment times and the squared sum of
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TABLE 1 Parameters, variance of treatment effect estimator, and experimental design

Parameter Impact on var(𝜷𝒙) Implications for Experimental Design

𝜎2 ∙ Variance is bounded below by
(
𝑚+𝑛

𝑚𝑛

)
𝜎2
𝛽
(1 − 𝜌2)

when 𝜎2 = 0
Reducing the pure error or choosing endpoints with
smaller pure error increases power.

∙ Variance monotonically increases as 𝜎2 increases
𝜎2𝛼 ∙When 𝜎2𝛼 = 0, variance reduces to(

𝑚+𝑛

𝑚𝑛

)(
𝜎2

(𝑘+1)𝒕2
{𝑘}

+ 𝜎2
𝛽

) If population is very homogeneous (in terms of the
outcome measure) at baseline, then placing more
intermediate points closer to the end increases
power.

∙When 𝜎2𝛼 → ∞, variance converges to(
𝑚+𝑛

𝑚𝑛

)(
𝜎2

(𝑘+1)(𝒕2
{𝑘}
−𝒕{𝑘} 𝒕{𝑘})

+ 𝜎2
𝛽
(1 − 𝜌2)

) If population is very heterogeneous at baseline, then
maximizing the spread of design points increases
power where maximum power is achieved with
half of the design points at baseline and half at the
end.

𝜎2
𝛽

∙ If 𝜌 ≥ 0, variance is minimized when 𝜎𝛽 = 0 When baseline and slope are not negatively
correlated, smaller slope variability always
increases power. However, this is not true in cases
of negatively correlated baseline & slope.

∙ If 𝜌 < 0, variance is minimized when
𝜎𝛽 =

−𝜎2𝜌𝜎𝛼𝒕{𝑘}

𝜎2𝒕2
{𝑘}
+(𝑘+1)𝜎2𝛼(1−𝜌2)(𝒕

2
{𝑘}
−𝒕{𝑘} 𝒕{𝑘})

𝜌 ∙ Variance is a quadratic function of 𝜌 All else being equal, endpoints with a more
negatively correlated baseline & slope will be more
powerful than those with a positively correlated
baseline & slope.

∙ Variance is minimized when 𝜌 = −1
∙ Variance is maximized when
𝜌 = 𝑚𝑖𝑛{

𝜎2𝒕{𝑘}

(𝑘+1)𝜎𝛼𝜎𝛽(𝒕
2
{𝑘}
−𝒕{𝑘} 𝒕{𝑘})

, 1}

Duration of
follow-up

∙ Variance monotonically decreases as duration
increases

Longer follow-up has bigger impact on power in
homogeneous populations (i.e. 𝜎𝛼 & 𝜎𝛽 small) vs.
heterogeneous populations.

∙When 𝜎2𝛼 = 0 and 𝜎2𝛽 = 0, variance reduces to(
𝑚+𝑛

𝑚𝑛

)
𝜎2

(𝑘+1)𝒕2
{𝑘}

Placement of
intermediate
points

∙ Impact is non-linear without a closed-form
solution. However, the variance is the ratio of
polynomial functions of 𝒕{𝑘} and var({𝑡0, 𝑡1, … , 𝑡𝑘}).
In a closed region of variables 𝒕{𝑘} and
var({𝑡0, 𝑡1, … , 𝑡𝑘}), the global minimum value can
be achieved at a certain combination of 𝒕{𝑘} and
var({𝑡0, 𝑡1, … , 𝑡𝑘}). A numerical grid search on
placement of intermediate points can be used to
satisfy the combination of these 2 variables.

Equispaced design appears to have good properties at
first glance, however, optimal placement of design
points requires further research.

them play a role in the covariance matrix. When designing an experiment, researchers are interested in the properties
of the treatment effect estimator variance var(𝛽𝑥); a design objective is to minimize the treatment estimator variance.
Formula (2) provides a quantitative objective function to explore where to place postbaseline assessment timepoints. We
mention without proving that var(𝛽𝑥) decreases as 𝑘 increases, since more information is collected with a longer dura-
tion experiment. Also note that assigning equal sample sizes of experimental and control groups is optimal in terms of
minimizing Formula (2). We summarize in Table 1 how different parameters in the model affect var(𝛽𝑥) and possible
implications for experimental design.
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In addition to the RCRMwhen dealing with correlation within experimental units, another popular model is the mixed
model with repeated measures (MMRM) (Gadbury et al., 2003; Little & Rubin, 2019). The MMRM treats the assessment
time as categorical, and the response variable is usually “change-from-baseline” with baseline value being added as a
covariate. Under the RCRMgeneratingmodel, Mackey et al. (2017) compares the RCRMandMMRM in power and sample
size. If 𝛽𝑥,MMRM is the treatment effect estimator (annualized for fair comparison) at time 𝑡𝑘 under MMRM fitting, it can
be shown (Mackey et al., 2017) that

var(𝛽𝑥,MMRM) =
(𝑚 + 𝑛
𝑚𝑛

)𝜎4 + 𝜎2
𝛽

(
𝜎2𝛼
(
1 − 𝜌2

)
+ 𝜎2

)
𝑡2
𝑘
+ 2𝜎2

(
𝜎2𝛼 + 𝜌𝜎𝛼𝜎𝛽𝑡𝑘

)(
𝜎2𝛼 + 𝜎

2
)
𝑡2
𝑘

,

under the assumption that all subjects finish assessments at 𝑡0, 𝑡1, … , 𝑡𝑘 . It can be shown that var(𝛽𝑥,MMRM) from
the MMRM is identical to var(𝛽𝑥) from the RCRM, when the generating model is the RCRM and that there is
only one postassessment (𝑘 = 1). In other cases where there are at least two postbaseline assessments, it can be
shown that the RCRM is more efficient than the MMRM (Mackey et al., 2017). Granted, one can construct a con-
trast across different timepoints based on the MMRM, however the focus is usually on the last timepoint in primary
analyses of clinical trials (Biogen, 2015; Hoffmann-La Roche, 2016; Honig et al., 2018). Chen et al. (2018) also com-
pares the RCRM and MMRM through simulations, concluding that in general both are type I error controlled under
model misspecification and that the RCRM (without random effects added) has a moderate power advantage over the
MMRM.
We also compare the RCRM treatment effect estimate variance with the two-stage formulation variance (Fitzmaurice

et al., 2012). Essentially, Stage 1 fits separate linear regression models for each subject, and Stage 2 further assumes that
the fitted individual-specific effects are random. Yang et al. (2001) shows that the two-stage estimators for the model
parameters are consistent estimators under the assumption that the fourth moments of 𝛽, 𝛽𝑥, and 𝜀𝑖𝑗 exist. The two-stage
formulation variance on the treatment effect var(𝛽𝑥,2-stage) is expressed as

var(𝛽𝑥,2-stage) =
(𝑚 + 𝑛

mn

) ⎛⎜⎜⎜⎝
𝜎2

(𝑘 + 1)
(
𝐭2
{𝑘}
− 𝐭{𝑘} 𝐭{𝑘}

) + 𝜎2𝛽
⎞⎟⎟⎟⎠ .

Clearly, var(𝛽𝑥,2-stage) does not take into account the impact of the variability 𝜎2𝛼 at baseline or its correlation with the
slope, whereas var(𝛽𝑥) from the RCRM provides a full description of how different variability components and placement
of points affect the treatment effect variance.
Next, we extend the RCRM covariance matrix to the case of monotone missingness.

Theorem 1. Under the RCRM generating model described in (1), assuming monotone missingness for assessments
𝑡0, 𝑡1, 𝑡2, … , 𝑡𝐽 and assuming same dropout rate between experimental and control groups, the covariance matrix of the MLE

vector 𝜷 =
⎡⎢⎢⎣
�̂�

𝛽

𝛽𝑥

⎤⎥⎥⎦ is

var
(
𝜷
)
=
⎡⎢⎢⎣
(𝑚 + 𝑛)𝐴∗ (𝑚 + 𝑛)𝐵∗ 𝑚𝐵∗

(𝑚 + 𝑛)𝐵∗ (𝑚 + 𝑛)𝐶∗ 𝑚𝐶∗

𝑚𝐵∗ 𝑚𝐶∗ 𝑚𝐶∗

⎤⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎣

−
𝐶∗

(𝐵∗2 − 𝐴∗𝐶∗)(𝑚 + 𝑛)

𝐵∗

(𝐵∗2 − 𝐴∗𝐶∗)(𝑚 + 𝑛)
0

𝐵∗

(𝐵∗2 − 𝐴∗𝐶∗)(𝑚 + 𝑛)
−

𝐴∗𝐶∗(𝑚 + 𝑛) − 𝐵∗2𝑚

𝐶∗(𝐵∗2 − 𝐴∗𝐶∗)𝑛(𝑚 + 𝑛)
−

1

𝐶∗𝑛

0 −
1

𝐶∗𝑛

𝑚 + 𝑛

𝐶∗𝑚𝑛

⎤⎥⎥⎥⎥⎥⎦
, (3)
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where 𝐽 is the maximum number of postbaseline assessments, and

𝐴∗ =

𝐽∑
𝑘=0

𝑝𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
𝜎2 + (𝑘 + 1)𝜎2

𝛽

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)⎫⎪⎬⎪⎭ ,

𝐵∗ =

𝐽∑
𝑘=0

𝑝𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
𝜎2𝒕{𝑘} − (𝑘 + 1)𝜌𝜎𝛼𝜎𝛽

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)⎫⎪⎬⎪⎭ ,

𝐶∗ =

𝐽∑
𝑘=0

𝑝𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
𝜎2𝒕2

{𝑘}
+ (𝑘 + 1)𝜎2𝛼

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)⎫⎪⎬⎪⎭ ,
where

𝒕2
{𝑘}
=

1

𝑘 + 1

𝑘∑
𝑗=0

𝑡2
𝑗

𝒕{𝑘} =
1

𝑘 + 1

𝑘∑
𝑗=0

𝑡𝑗

with 𝑡0 ≡ 0;𝑚 and 𝑛 are baseline sample sizes of the experimental group and control group, respectively; 𝑝𝑘 (𝑘 = 0, 1, 2, … , 𝐽)

is the percentage of subjects who only have assessments at 𝑡0, 𝑡1, … , 𝑡𝑘 (i.e., no additional assessments), with
𝐽∑
𝑘=0

𝑝𝑘 = 1.

Proof. See Appendix A.2. □

Note that 𝑝𝑘 (𝑘 = 0, 1, … , 𝐽) is the same between the experimental and control groups, under the assumption of same
dropout rate between groups. In cases where the dropout rates between groups are not the same, the result in Theorem 1
can be generalized accordingly; we present this generalized result in Theorem A1 in Appendix A.3. Unless specifically
mentioned, we assume the same dropout rate between groups in this article. Since many experiments are designed with
equally spaced assessment gaps, we also derive the variance results in this specific setting, presented in Corollary A1 in
Appendix A.4.
In clinical trials, it is often reasonable to assume certain dropout patterns based on either the knowledge of historical

trials or the nature of the therapeutic area. Next in this section, we will give an example of how a dropout assumption
can be incorporated in the variance calculation in the setting with equally spaced assessment gaps. We further extend the
formula to a special setting called common-close in an experimental design.

3.1 Dropout and common-close

Acommonly used dropoutmodel in clinical trials is the exponentialmodel. Under this assumption, the number of subjects
in the trial at time 𝑡 is expressed as 𝑁(𝑡) = 𝑁(0)𝑒−𝜆𝑡, where 𝑁(0) is the number of subjects at baseline. In practice, the
dropout rate 𝜆 can often be estimated from historical data. Again assuming monotone missingness and equal assessment
gaps denoted as ℎ, the probabilities 𝑝𝑘’s are calculated as

𝑝𝑘 =

{
𝑒−𝑘ℎ𝜆

(
1 − 𝑒−ℎ𝜆

)
, 𝑘 = 0, 1, 2, … , 𝐽 − 1

𝑒−𝐽ℎ𝜆, 𝑘 = 𝐽.
(4)

For other dropout assumptions, 𝑝𝑘’s can also be calculated accordingly; we will not further enumerate other cases.
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TABLE 2 Parameters, variance of treatment effect estimator, and experimental design (Continued)

Parameter Impact on var(𝜷𝒙) Implications for Experimental Design
𝑝𝑘 ∙ Variance decreases as larger 𝑝𝑘 ’s are distributed

to larger 𝑘’s (later time points)
Smaller drop-out rate (i.e. assigning more
𝑝𝑘 ’s to later time points) will lead to
power gain.

Equal follow-up vs.
common-close

∙ Common-close always provides smaller variance
(some subjects gain extra assessments and thus
𝑝𝑘 ’s will be distributed to later time points)

Common-close designs and analyses may
provide substantial power increase over
equal follow-up.

∙ Longer enrollment with more subjects enrolled
early in the common-close design always
provides smaller variance (more assessment
points; 𝑝𝑘 ’s being assigned more to later time
points)

As the next part of this section, we point out that the variance formula described in either Theorem 1 or Corollary A1
can accommodate the common-close experimental design. A common-close specifies that all subjects remain in their
randomized group and are assessed until the last enrolled subject in the experiment reaches a certain landmark in time
(as opposed to a common duration from baseline) (Tariot et al., 2018). In the common-close setting, the probabilities 𝑝𝑘
are affected by not only the dropout rate, but also enrollment (e.g., duration and distribution). This design feature adds
additional computation to the power and sample size estimation and can qualitatively affect power and sample size. This
makes intuitive sense since the RCRM is provided with extra information coming from additional assessments that are
further from baseline than all other assessments not part of the common-close period. We next present how to calculate
𝑝𝑘’s in a common-close design, under the assumption of exponential dropout and equal assessment gap ℎ.
We assume the enrollment duration is 𝐸 with 𝐸 = (𝑒 + 𝛿)ℎ where 𝑒 is an integer such that 0 ≤ 𝛿 < 1. The experiment

is designed such that every subject remains in the experiment until the last enrolled subject reaches time 𝐽ℎ. Without loss
of generality, we further assume the enrollment duration 𝐸 is shorter than 𝐽ℎ. As a result, subjects who enrolled early
could be assessed up to 𝑡 = (𝐽 + 𝑒)ℎ. For example, if the enrollment duration is 1.7 years and every subject is assessed with
0.5-year equal gaps until the last enrolled subject reaches 2 years, then ℎ = 0.5, 𝐽 = 4, 𝐸 = 1.7 with 𝑒 = 3 and 𝛿 = 0.4;
early-enrollers could be assessed up to 3.5 years.
Further, we assume 100 ∗ 𝑞0% of the subjects are enrolled in the enrollment interval [0, 𝛿ℎ] and 100 ∗ 𝑞𝑗% are enrolled

in the enrollment interval ((𝛿 + 𝑗 − 1)ℎ, (𝛿 + 𝑗)ℎ] (𝑗 = 1, 2, … , 𝑒). Note that
𝑒∑
𝑗=0
𝑞𝑗 = 1. To allow for flexibility, we will not

assume any specific enrollment distribution. To present the variance, power, and sample size formula in the common-
close setting, all the upper bound of summation indices in the previous Theorem 1 and Corollary A1 will be extended from
𝐽 to 𝐽 + 𝑒. We first categorize subjects into groups according to the maximum number of possible assessments and then
apply the exponential dropout assumption, we present the 𝑝𝑘’s in the common-close setting.

𝑝𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑒−𝑘ℎ𝜆
(
1 − 𝑒−ℎ𝜆

)
, 𝑘 = 0, 1, 2, … , 𝐽 − 1(

𝐽+𝑒−1−𝑘∑
𝑗=0

𝑞𝑗

)
𝑒−𝑘ℎ𝜆

(
1 − 𝑒−ℎ𝜆

)
+ 𝑞𝐽+𝑒−𝑘𝑒

−𝑘ℎ𝜆, 𝑘 = 𝐽, 𝐽 + 1,… , 𝐽 + 𝑒 − 1

𝑞0𝑒
−(𝐽+𝑒)ℎ𝜆, 𝑘 = 𝐽 + 𝑒.

(5)

Since common-close always provides smaller variance than follow-up = 𝐽ℎ for all subjects (by examining Equations
(3), (4), and (5); details not shown in this article), common-close designs have the potential to provide a substantial power
increase over equal follow-up designs. More specifically, longer enrollment with more subjects enrolled toward the begin-
ning of a common-close design, resulting in larger 𝑒 (more assessment points) and more 𝑝𝑘’s being assigned to later time
points, will also increase power. We summarize the implications of 𝑝𝑘’s and common-close design in Table 2, as the con-
tinuation of Table 1.
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4 POWER FORMULA

We start this section by stating the hypothesis test in the following where we assume the true 𝛽𝑥 > 0.

𝐻0 ∶ 𝛽𝑥 = 0,

𝐻1 ∶ 𝛽𝑥 > 0.

We assume the one-sided confidence level is 𝑎∕2. Under the RCRM, the statistical power is expressed as:

Power = P(Reject𝐻0|𝛽𝑥 > 0) (6)

= Φ

⎛⎜⎜⎜⎜⎝
𝛽𝑥√

var
(
𝛽𝑥

) − 𝑧1−𝑎
2

⎞⎟⎟⎟⎟⎠
, (7)

where

var
(
𝛽𝑥

)
=
𝑚 + 𝑛

𝐶∗∗𝑚𝑛

with notations from Theorem 1 (in which case 𝐶∗∗ = 𝐶∗) or Corollary A1 (in which case 𝐶∗∗ = 𝐶†), andΦ(⋅) is the cumu-
lative distribution function of the standard normal distribution. In the case where the true 𝛽𝑥 < 0, then 𝛽𝑥 in Formula (7)
can be replaced with −𝛽𝑥.
While our assumption of mutivariate normality with known variance components (𝜎2𝛼, 𝜎2𝛽 , 𝜎

2, and 𝜌) implies exact nor-
mality of the estimated parameters, the result will be asymptotically normal in cases where the variance components are
consistently estimated. In small samples, the power formula can be modified to incorporate the noncentral 𝑡-distribution
with the appropriate degrees of freedom, for example, by Kenward-Roger (Kenward & Roger, 1997). In Section 6, we will
illustrate the accuracy of asymptotic estimates of power when variance components are not assumed to be known.

5 SAMPLE SIZE FORMULA

We present the following theorem on sample size planning.

Theorem 2. Let 𝛾 denote the sample size allocation ratio between the experimental group and control group (experimental
over control) at baseline, and let𝑁 denote the total sample size needed with 1 − 𝜂 power at 𝑎∕2 one-sided confidence level, we
have

𝑁 = ⌈ (1 + 𝛾)2
𝛾𝐶∗∗

(𝑧1−𝑎
2

+ 𝑧1−𝜂

𝛽𝑥

)2⌉, (8)

where 𝐶∗∗ is from either Theorem 1 or Corollary A1, and ⌈⋅⌉ is the ceiling function.
Proof. The proof is straightforward based on Equation (7) and therefore omitted. □

6 SIMULATIONS

In this section, we perform simulation studies to evaluate the performance of the power formula from Section 4. We
assume 𝛼 = 0, 𝛽 = −1, 𝜎2𝛼 = 2, 𝜎2𝛽 = 0.5, and 𝜎

2 = 1. We choose 𝜌 = −0.6 and 0.3 so that the overall pairwise correlation
between visits (𝑌𝑖𝑗 ’s) is about 0.5 and 0.7, respectively (Lu et al., 2009); we also choose 𝜌 = 0 to evaluate the performance
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TABLE 3 Data distribution in the simulation study

Total Dropout Baseline 𝒕 = 𝟎.𝟓 𝒕 = 𝟏 𝒕 = 𝟏.𝟓 𝒕 = 𝟐

(%) 𝝀 𝒑𝟎 (%) 𝒑𝟏 (%) 𝒑𝟐 (%) 𝒑𝟑 (%) 𝒑𝟒 (%)
0 0 0 0 0 0 100
15 0.081 4.0 3.8 3.7 3.5 85
30 0.178 8.5 7.8 7.1 6.5 70

of the power formula under the assumption of independence between intercept and slope random effects. To examine
the sample size sensitivity of the RCRM power formula in Section 4, we consider two sample size scenarios: 100 and 500.
The sample size of 100 aims to reflect a potential Phase II Alzheimer’s disease (AD) trial (Salloway et al., 2018; Cummings
et al., 2018), and the size of 500 reflects a potential Phase III AD trial (Honig et al., 2018; Ostrowitzki et al., 2017). In both
scenarios, we assume the experimental and control allocation is 1:1 and the total trial duration is two years with a 0.5-year
assessment gap. We calculate 𝛽𝑥 so that the theoretical power to detect the treatment effect from Equation (7) is 90% and
80%, respectively, when the total sample size is 500 and 100, assuming no dropouts. The parameters are summarized in
the following.

1. Total size 500 with 1:1 allocation ratio: theoretical power is 90% with one-sided 0.025 level hypothesis test, assuming
no dropouts. 𝛽𝑥 = 0.208 in the case of 𝜌 = −0.6; 𝛽𝑥 = 0.274 in the case of 𝜌 = 0.3; 𝛽𝑥 = 0.265 in the case of 𝜌 = 0.

2. Total size 100 with 1:1 allocation ratio: theoretical power is 80% with one-sided 0.1 level hypothesis test, assuming no
dropouts. 𝛽𝑥 = 0.305 when 𝜌 = −0.6; 𝛽𝑥 = 0.402 when 𝜌 = 0.3; 𝛽𝑥 = 0.389 when 𝜌 = 0.

We further assume three exponential dropout scenarios with 0%, 15%, and 30% end-of-study dropout percentages. For
simplicity, the exponential dropout assumption is used. Table 3 summarizes the exponential yearly dropout rate 𝜆 and the
data distribution at each assessment. For example, in the case of 15% total dropout at the end of the trial, the exponential
yearly dropout rate 𝜆 is 0.081; about 3.7% of the subjects will only have data up until 𝑡 = 1 (corresponds to 𝑝2) and 85% of
the subjects will complete the study (corresponds to 𝑝4). In our simulation, we generate missing values in each replicate
based on the multinomial distribution with probabilities specified in Table 3.
We generate data fromboth the correctly specifiedmodel and contaminatedmodels to, respectively, evaluate the validity

and robustness of the RCRM power formula. We summarize the five model generating mechanisms below:

1. Generate data from normal distributions (𝑢0𝑖 , 𝑢1𝑖 , and 𝜀𝑖𝑗); mean trajectory is generated from the specified RCRM
model.

2. Generate baseline data from a truncated normal distribution, forcing the baseline score ≥ 0.8; mean trajectory is gen-
erated from the specified RCRMmodel. This is to mimic trial inclusion criterion of the baseline score needing to meet
a certain threshold; this leads to the probability of enrollment being around 68%.

3. Generate 𝑢0𝑖 and 𝑢1𝑖 from a multivariate 𝑡 distribution with degrees of freedom 3; mean trajectory is generated from
the specified RCRMmodel. This is to mimic a heavy tailed distribution.

4. Generate 𝑢0𝑖 and 𝑢1𝑖 from a truncated multivariate 𝑡 distribution with degrees of freedom 3, forcing the baseline score
≥ 0.8; mean trajectory is generated from the specified RCRMmodel. This is to mimic both trial inclusion criterion and
heavy tails.

5. Generate data from normal distributions (𝑢0𝑖 , 𝑢1𝑖 , and 𝜀𝑖𝑗). However, the mean trajectory is generated from a quadratic
model where a 𝑡2 termwith coefficient of 0.05𝛽 is added to both experimental and control groups. As a result, themean
change from baseline at 𝑡 = 2 in both groups gets inflated by 10% compared with that from the specified RCRMmodel.
This scenario is to mimic the case in which the time trajectory is not linear.

We use the lme R function from the nlme package (Pinheiro et al., 2017) to fit the generated data and the number of
iterations in our simulation studies is 10,000.We also calculate the two-stage formulation power described in Fitzmaurice,
Laird, andWare (Fitzmaurice et al., 2012). Although acknowledging the full model should come from Equation (1) where
four variance components are warranted, the calculation of two-stage formulation power only takes into account the slope
random effect 𝑢1𝑖 and the pure error 𝜀𝑖𝑗 (Fitzmaurice et al., 2012). We extend the two-stage formulation power formula to
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TABLE 4 Large sample size simulation setup and results (total sample size = 500 with 1:1 allocation; 10,000 replications).
𝛼 = 0, 𝛽 = −1, 𝜎2𝛼 = 2, 𝜎

2
𝛽
= 0.5, 𝜎2 = 1

Simulated Power

Parameters
Total
Dropout (%)

RCRM
Theoretical
Power

Two-Stage
Formulation
Power Normal

Truncated
Normal 𝒕𝟑

Truncated
𝒕𝟑 Quad

𝜌 = −0.6

𝛽𝑥 = 0.208

0 0.900 0.689 0.899 0.900 0.907 0.862 0.898

15 0.863 0.639 0.862 0.865 0.870 0.823 0.865
30 0.813 0.581 0.803 0.812 0.830 0.781 0.808

𝜌 = 0.3 𝛽𝑥 = 0.274 0 0.900 0.899 0.892 0.893 0.911 0.865 0.899
15 0.865 0.863 0.868 0.860 0.880 0.829 0.864
30 0.818 0.815 0.818 0.818 0.826 0.773 0.817

𝜌 = 0 𝛽𝑥 = 0.265 0 0.900 0.879 0.900 0.903 0.902 0.860 0.898
15 0.865 0.840 0.863 0.866 0.874 0.825 0.870
30 0.819 0.789 0.822 0.814 0.840 0.770 0.817

TABLE 5 Small sample size simulation setup and results (total sample size = 100 with 1:1 allocation; 10,000 replications).
𝛼 = 0, 𝛽 = −1, 𝜎2𝛼 = 2, 𝜎

2
𝛽
= 0.5, 𝜎2 = 1

Simulated Power

Parameters
Total
Dropout (%)

RCRM
Theoretical
Power

Two-Stage
Formula-
tion
Power Normal

Truncated
Normal 𝒕𝟑

Truncated
𝒕𝟑 Quad

𝜌 = −0.6

𝛽𝑥 = 0.305

0 0.800 0.627 0.800 0.805 0.822 0.786 0.802

15 0.764 0.593 0.762 0.760 0.799 0.754 0.768
30 0.721 0.554 0.713 0.721 0.753 0.705 0.721

𝜌 = 0.3 𝛽𝑥 = 0.402 0 0.800 0.799 0.792 0.798 0.821 0.781 0.797
15 0.766 0.764 0.766 0.758 0.795 0.745 0.768
30 0.725 0.722 0.728 0.719 0.745 0.715 0.720

𝜌 = 0 𝛽𝑥 = 0.389 0 0.800 0.779 0.796 0.793 0.822 0.780 0.799
15 0.766 0.743 0.770 0.761 0.791 0.755 0.770
30 0.725 0.701 0.722 0.723 0.750 0.716 0.719

also accommodate the dropout information:

Power2-stage = Φ

⎛⎜⎜⎜⎜⎝
𝛽𝑥√

var
(
𝛽𝑥,2-stage

) − 𝑧1−𝑎
2

⎞⎟⎟⎟⎟⎠
,

where

var
(
𝛽𝑥,2-stage

)
=
(𝑚 + 𝑛

mn

)
∕

𝐽∑
𝑘=0

𝑝𝑘

⎛⎜⎜⎜⎝
(𝑘 + 1)

(
𝐭2
{𝑘}
− 𝐭{𝑘} 𝐭{𝑘}

)
𝜎2 + (𝑘 + 1)

(
𝐭2
{𝑘}
− 𝐭{𝑘} 𝐭{𝑘}

)
𝜎2
𝛽

⎞⎟⎟⎟⎠ .
The simulation setup and results are summarized in Tables 4 and 5. In general, the theoretical RCRM power is very close
to the simulated power regardless of the sample size.
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TABLE 6 ADNI RCRM fitting results

𝜶 𝜷 𝝈𝟐𝜶 𝝈𝟐
𝜷

𝝆 𝝈𝟐

1.53 1.10 0.54 1.01 0.07 0.81

We first examine Table 4 where the total size is 500. When data are simulated from normal distribution, truncated
normal distribution, 𝑡3 distribution, and the quadratic trajectory, the theoretical RCRM power is bounded within 0.01
of the simulated power, except for some cases of 𝑡3 distribution (off up to 0.021 in difference). Of note, when data are
generated from the 𝑡3 distribution, the theoretical RCRM power consistently underestimates the simulated power. In our
simulation setup, the case of truncated 𝑡3 distribution yields the farthest departure from the model assumption in terms
of variance structure, in which case the theoretical RCRM power is the most inaccurate; the theoretical RCRM power
overestimates the simulated power by about 0.03 to 0.04 in difference. When the data are generated from the quadratic
trajectory, the theoretical RCRM power is still very close to the simulated power.
We next examine Table 5 where the total size is relatively small: 100.When data are simulated from normal distribution,

truncated normal distribution, and the quadratic trajectory, the theoretical RCRM power is bounded within 0.01 of the
simulated power. Again, as with what is observed in the case of sample size = 500, when data are generated from the
𝑡3 distribution, the theoretical RCRM power consistently underestimates the simulated power. However, when data are
generated from the truncated 𝑡3 distribution, the theoretical RCRM power slightly overestimates the simulated power.
With the smaller sample size of 100, the theoretical RCRM power still performs reasonably well when the mean trajectory
is generated by a quadratic curve.
In both sample size cases where 𝜌 = −0.6, the two-stage formulation power dramatically underestimates the simulated

power by about 0.2 to 0.3 in difference. When 𝜌 = 0.3 and 𝜌 = 0, however, the two-stage formulation power is very close
to the theoretical RCRM and also the simulated power. We conclude that the theoretical RCRM power formula will be
useful in general practice. The two-stage formulation power, however, can be dramatically inaccurate and thus should be
used with caution.

7 AN APPLICATION

To illustrate how to apply the RCRM sample size formula for trial planning, we use the “ADNIMERGE” data set from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) for parameter estimation. The ADNI
was launched in 2003 as a public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early AD.We take a subset of the data using the following simple inclusion criteria,
aiming to mimic some of the most common assumptions in recent AD Phase III trials (Biogen, 2015; Hoffmann-La Roche,
2016; Honig et al., 2018).

1. Amyloid PET positive at baseline (variable “PET.bl.ind” in the data set)
2. AD status is late mild cognitive impairment (LMCI) at baseline (variable “DX.bl” in the data set)

The outcomemeasure chosen is the Clinical Dementia Rating sum of boxes (CDR-SB) (Hughes et al., 1982). Tomaintain
the population of interest, we only include subject records within five years after baseline. After applying the inclusion
criteria, there are 255 subjects with 1305 observations remaining. We then fit the RCRMmodel described in Equation (1),
except that the 𝛽𝑥 term is removed because all subjects in this database did not receive any disease-modifying treatment.
Table 6 summarizes the fitting results.
Now we design a trial to detect the effect of a disease-modifying treatment. From Table 6, 𝛽 = 1.10, which will be

assumed as the placebo population yearly slope in the trial design. If we assume the disease-modifying treatment has a
true 30% relative reduction effect on slowing the disease progression, 𝛽𝑥 can be calculated as −30%𝛽 = −0.33.
Instead of using a traditional trial design where all subjects are scheduled to be assessed for a fixed duration in time,

we illustrate the use of a common-close design. The aim is to showcase how the common-close design could reduce the
sample size to maintain a power target. In particular, we design a trial where every subject remains in the 1:1 randomized
group (experimental or control) until the last enrolled subject reaches two years, at which point the trial will end. Further,

http://adni.loni.usc.edu
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TABLE 7 Data distribution in the application

Baseline 𝒕 = 𝟎.𝟓 𝒕 = 𝟏 𝒕 = 𝟏.𝟓 𝒕 = 𝟐 𝒕 = 𝟐.𝟓 𝒕 = 𝟑 𝒕 = 𝟑.𝟓

𝝀 𝒑𝟎 (%) 𝒑𝟏 (%) 𝒑𝟐 (%) 𝒑𝟑 (%) 𝒑𝟒 (%) 𝒑𝟓 (%) 𝒑𝟔 (%) 𝒑𝟕 (%)
0.081 3.97 3.81 3.66 3.51 27.40 25.35 23.43 8.86

TABLE 8 Schedule of assessments and sample size (exponential dropout rate 𝜆 = 0.081)

Schedule of Assessments
Total
Sample Size

Baseline 0.5 1 1.5 2 2.5 3 3.5 368
Baseline 0.25 0.5 1.5 2 3 3.25 3.5 378
Baseline 0.25 0.5 0.75 1 2 3.25 3.5 388
Baseline 0.5 1 2 2.1 2.2 2.3 3.5 366

we assume that the total enrollment duration is 1.7 years and that subjects are entering the trial based on a Poisson process.
Thus, the earliest-enrolled subjects can be assessed in the trial for up to 3.7 years. We further assume that the exponential
dropout rate is 𝜆 = 0.081, which corresponds to 7.78% dropout in the first year of enrollment. We point out that many
assumptions in the proceeding are mainly for illustration and can be easily adapted to other settings.
We first calculate the sample size required for a trial design where assuming equal 0.5-year assessment gaps, to achieve

80% power at one-sided 𝑎∕2 = 0.025 level detecting 30% treatment relative reduction (i.e., 𝛽𝑥 = −0.33). Without showing
details in calculation, we present in Table 7 the data distribution based on our previously stated assumptions. Approxi-
mately 57.6% of the subjects will reach at least year 2.5 in the study.
Using the sample size formula in Equation (8) along with the variance formula in Theorem 1 and the data distribution

from Table 7, the total sample size needed is 368 with 184 subjects in each group.
We then explore the sample size needed in the scenario of unequal assessment gaps; we keep the number of assessments

the same and we fix the last assessment at 𝑡 = 3.5. The total sample size needed under several assumptions of schedule of
assessments is summarized in Table 8. The first row serves as the basis where 0.5-year equal gap is assumed. The schedule
of assessments in the second row replaces 𝑡 = 1 with 0.25 and 𝑡 = 2.5 with 3.25, which leads to 10 extra subjects needed
in total. In the next row, more frequent assessments are assumed in the beginning and the end, which leads to 20 extra
subjects needed in total; the last row reduces two subjects needed in total, putting more assessments around year 2. We
point out that the sample size depends on the schedule of assessments, dropout pattern, and enrollment pattern. In this
example, the equally gapped schedule of assessments appears to be performing well in terms of the sample size. However,
further research on the optimal placement of assessments is warranted.

8 DISCUSSION

In this article, we have provided the theoretical variance, power, and sample size formulae in the context of the RCRM.
Simulations have illustrated the accuracy and robustness of the theoretical results in both small and large samples.Wehave
also provided an application to demonstrate sample size and assessment planning, based on comprehensive assumptions
including enrollment pattern and dropout rate.
The use of the RCRM assumes linearity, or more generally, further assumes the validity of partitioning the total vari-

ability into four components: baseline, slope, correlation between baseline and slope, and pure error. We believe that in
many nonlinear cases, the linear framework provides a useful first-order approximation, which is especially truewhen the
response variable changes slowly within the experiment’s timescale. In addition, the four-part variability partition pro-
vides flexibility to accommodatemanyunderlying variance–covariance structures. In caseswhere the linearity assumption
is in question and/or the control of type I error is critical, the robust sandwich variance estimator proposed byWhite (1982)
can be used in addition to, or in place of, the likelihood-based variance during the analysis stage.
We have provided insights on how to design more efficient experiments. Common-close design, perhaps, is the most

obvious choice to help boost power. The problem of optimizing placement of intermediate point(s), however, is nonlinear
without a closed-form solution; further research is needed.
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9 R SHINY APPLICATION

To help researchers directly use the theoretical results from this article, we have built an R Shiny application, hosted on the
cloud through shinyapps.io. To access the web version of the Shiny application, visit https://rcrm-power-size.shinyapps.
io/rcrm_power_size/. For R code details, visit the GitHub site https://github.com/nan-hu-personal/RCRM_power_size.
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APPENDIX
A.1 Lemma 1 and proof
Lemma A1. Under the RCRM generating model described in (1), assuming all subjects only complete assessments at

𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑘 , the covariance matrix of the RCRMMLE vector 𝜷 =
⎡⎢⎢⎣
�̂�

𝛽

𝛽𝑥

⎤⎥⎥⎦ is

var
(
𝜷
)
=

⎡⎢⎢⎢⎣
(𝑚 + 𝑛)𝐴 (𝑚 + 𝑛)𝐵 𝑚𝐵

(𝑚 + 𝑛)𝐵 (𝑚 + 𝑛)𝐶 𝑚𝐶

𝑚𝐵 𝑚𝐶 𝑚𝐶

⎤⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎢⎢⎢⎣

−
𝐶

(𝐵2 − 𝐴𝐶)(𝑚 + 𝑛)

𝐵

(𝐵2 − 𝐴𝐶)(𝑚 + 𝑛)
0

𝐵

(𝐵2 − 𝐴𝐶)(𝑚 + 𝑛)
−
𝐴𝐶(𝑚 + 𝑛) − 𝐵2𝑚
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1
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1

𝐶𝑛

𝑚 + 𝑛

𝐶𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
, (A.1)

where 𝑘 represents the number of postbaseline assessments, and

𝐴 =
(𝑘 + 1)

[
𝜎2 + (𝑘 + 1)𝜎2
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𝒕2
{𝑘}
=

1

𝑘 + 1

𝑘∑
𝑖=0

𝑡2𝑖 ,

𝒕{𝑘} =
1

𝑘 + 1

𝑘∑
𝑖=0

𝑡𝑖 ,

with 𝑡0 ≡ 0; 𝑚 and 𝑛 are the sample sizes of the experimental group and control group, respectively.

Proof. We start by writing the RCRM in the matrix form. Specifically, Equation (1) can be rewritten as

𝒀𝑖 = 𝑋
(𝑙)𝜷 + 𝑈𝜸𝑖 + 𝜺𝑖, (A.2)

https://doi.org/10.1002/bimj.202000184


16 HU et al.

where 𝒀𝑖 = [𝑌𝑖0, 𝑌𝑖1, … , 𝑌𝑖𝑘]𝑇 , 𝜷 = [𝛼, 𝛽, 𝛽𝑥]𝑇 , 𝜸𝑖 = [𝑢0𝑖, 𝑢1𝑖]𝑇 , 𝜺𝑖 = [𝜀𝑖0, 𝜀𝑖1, … , 𝜀𝑖𝑘]𝑇 , and

𝑋(𝑙) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
1 𝑡0 𝑡0
1 𝑡1 𝑡1
⋮ ⋮ ⋮
1 𝑡𝑘 𝑡𝑘

⎤⎥⎥⎥⎦ , if 1 ≤ 𝑖 ≤ 𝑚 (𝑙 = 1)

⎡⎢⎢⎢⎣
1 𝑡0 0
1 𝑡1 0
⋮ ⋮ ⋮
1 𝑡𝑘 0

⎤⎥⎥⎥⎦ , else if𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑛 (𝑙 = 2)

with𝑈 =

⎡⎢⎢⎢⎣
1 𝑡0
1 𝑡1
⋮ ⋮
1 𝑡𝑘

⎤⎥⎥⎥⎦. Here, without loss of generality, we assume the first𝑚 subjects (𝑙 = 1) are in the experimental group and

the last 𝑛 subjects (𝑙 = 2) are in the control group. We further denote the variance matrix within each subject as

𝑉 = 𝑈𝑔𝑈𝑇 + 𝑅, (A.3)

where 𝑔 =

[
𝜎2𝛼 𝜌𝜎𝛼𝜎𝛽

𝜌𝜎𝛼𝜎𝛽 𝜎2
𝛽

]
and 𝑅 = 𝜎2𝐼𝑘+1. Notice that 𝑉 is the same across all subjects.

The MLE of 𝜷 is then expressed as

𝜷 =
(
𝑋𝑇Σ−1𝑋

)−1
𝑋𝑇Σ−1𝒀

with the variance matrix given by

var
(
𝜷
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(
𝑋𝑇Σ−1𝑋

)−1
,

where 𝑋 = col{𝑋(1)𝑇, 𝑋(1)𝑇, … , 𝑋(2)𝑇}𝑇 , Σ = diag{𝑉, 𝑉,… , 𝑉}, and 𝒀 = [𝒀𝑇
1
, 𝒀𝑇

2
, … , 𝒀𝑇𝑚+𝑛]

𝑇 . Based on the assumption that
subjects are mutually independent, we have
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= 𝑚𝑋(1)𝑇𝑉−1𝑋(1) + 𝑛𝑋(2)𝑇𝑉−1𝑋(2).

Next, we will derive the explicit form of 𝑉−1. Applying the Woodbury matrix identity (Higham, 2002) to Equation (A.3)
yields

𝑉−1 = 𝑅−1 − 𝑅−1𝑈
(
𝑔−1 + 𝑈𝑇𝑅−1𝑈

)−1
𝑈𝑇𝑅−1.

Notice that (𝑔−1 + 𝑈𝑇𝑅−1𝑈) is a 2 × 2matrix and thus it is easy to calculate the inverse. After some algebraic calculation
and simplification, we have

𝑉−1 =
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×
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with

𝑀 =
𝜎4 + (𝑘 + 1)𝜎2
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.

For 1 ≤ 𝑖 ≤ 𝑚 (subjects from the experimental group), 𝑋(1)𝑇𝑉−1𝑋(1) can be further calculated as

𝑋(1)𝑇𝑉−1𝑋(1) =
⎡⎢⎢⎣
𝐴 𝐵 𝐵
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and for (𝑚 + 1) ≤ 𝑖 ≤ (𝑚 + 𝑛) (subjects from the control group),

𝑋(2)𝑇𝑉−1𝑋(2) =
⎡⎢⎢⎣
𝐴 𝐵 0

𝐵 𝐶 0

0 0 0

⎤⎥⎥⎦ ,
where

𝐴 =
(𝑘 + 1)

[
𝜎2 + (𝑘 + 1)𝜎2

𝛽

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

) ,

𝐵 =
(𝑘 + 1)

[
𝜎2𝒕{𝑘} − (𝑘 + 1)𝜌𝜎𝛼𝜎𝛽

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

) ,

𝐶 =
(𝑘 + 1)

[
𝜎2𝒕2

{𝑘}
+ (𝑘 + 1)𝜎2𝛼

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

) ,
with

𝒕2
{𝑘}
=

1

𝑘 + 1

𝑘∑
𝑖=0

𝑡2
𝑖
,

𝒕{𝑘} =
1

𝑘 + 1

𝑘∑
𝑖=0

𝑡𝑖.

The result in Lemma A1 then follows. □

A.2 Proof for Theorem 1
Proof. In this more general case, subjects will be grouped into different categories based on their last assessment time. We
now generalize the matrix form in Equation (A.2) as

𝒀𝑖 = 𝑋
(𝑙)

(𝑘)
𝜷 + 𝑈(𝑘)𝜸𝑖 + 𝜺𝑖.

The superscript 𝑙 is the index of the randomized group as in Equation (A.2); the subscript 𝑘 denotes the number of post-
baseline assessments for subject 𝑖. Again, we assume 𝑙 = 1 corresponds to the experimental group and 𝑙 = 2 corresponds
to the control group.
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We now categorize subjects into 𝐽 + 1 groups, based on their last assessment time. Specifically, we assume there are

𝑝𝑘 ∗ 100% of subjects that have and only have assessments 𝑡0, 𝑡1, … , 𝑡𝑘 (𝑘 = 0, 1, … , 𝐽) with
𝐽∑
𝑘=0

𝑝𝑘 = 1. The assumption of

monotone missingness guarantees there are only these 𝐽 + 1 groups in the experiment. In each category (without loss of
generality, we assume 𝑡𝑘 being the last assessment time), the corresponding design matrix 𝑋

(𝑙)

(𝑘)
and 𝑈(𝑘) are defined in

Appendix A.1. Vectors 𝒀𝑖 and 𝜺𝑖 also have the corresponding length 𝑘 + 1. The corresponding variance matrix for each
subject within this category is

𝑉(𝑘) = 𝑈(𝑘)𝑔𝑈
𝑇
(𝑘)
+ 𝑅(𝑘),

where 𝑔 and 𝑅(𝑘) are defined in Appendix A.1. Similarly, the MLE of 𝜷 is expressed as

𝜷 =
(
𝑋𝑇Σ−1𝑋

)−1
𝑋𝑇Σ−1𝒀

with the variance matrix given by

var
(
𝜷
)
=
(
𝑋𝑇Σ−1𝑋

)−1
,

where

𝑋 = col
{
𝑋
(1)𝑇

(0)
, 𝑋

(1)𝑇

(0)
, … , 𝑋

(1)𝑇

(𝐽)
, 𝑋

(1)𝑇

(𝐽)
, …𝑋

(2)𝑇

(0)
, 𝑋

(2)𝑇

(0)
, … , 𝑋

(2)𝑇

(𝐽)
, 𝑋

(2)𝑇

(𝐽)

}𝑇
,

Σ = diag
{
𝑉(0), 𝑉(0), … , 𝑉(𝐽), 𝑉(𝐽), 𝑉(0), 𝑉(0), … , 𝑉(𝐽), 𝑉(𝐽)

}
,

and 𝒀 = [𝒀𝑇
1
, 𝒀𝑇

2
, … , 𝒀𝑇𝑚+𝑛]

𝑇 . Grouping subjects first into randomized groups and then into categories based on the last
assessment time, we rewrite the Information matrix 𝑋𝑇Σ−1𝑋 as

𝑋𝑇Σ−1𝑋 =

𝐽∑
𝑘=0

𝑚𝑝𝑘𝑋
(1)𝑇

(𝑘)
𝑉−1
(𝑘)
𝑋
(1)

(𝑘)
+

𝐽∑
𝑘=0

𝑛𝑝𝑘𝑋
(2)𝑇

(𝑘)
𝑉−1
(𝑘)
𝑋
(2)

(𝑘)

=

𝐽∑
𝑘=0

𝑝𝑘

(
𝑚𝑋

(1)𝑇

(𝑘)
𝑉−1
(𝑘)
𝑋
(1)

(𝑘)
+ 𝑛𝑋

(2)𝑇

(𝑘)
𝑉−1
(𝑘)
𝑋
(2)

(𝑘)

)
.

Note that we assume the probabilities 𝑝0, 𝑝1, … , 𝑝𝐽 and the parameters in Σ (i.e. 𝜎2, 𝜎2𝛼, 𝜎2𝛽, 𝜌) are fixed and known in the
derivation above. Since we assume the data are missing at random, parameters can be consistently estimated by the MLE
(Little & Rubin, 2019). Using the results from Appendix A.1 then completes the proof. □

A.3 Theorem 3
Theorem 1. We now assume different dropout probabilities between the experimental group and control group. Denote
𝑝𝑒𝑥𝑝,𝑘 and 𝑝𝑐𝑡𝑙,𝑘 (𝑘 = 0, 1, 2, … , 𝐽) as the percentages of subjects who only have assessments at 𝑡0, 𝑡1, … , 𝑡𝑘 (i.e., no additional
assessments) from the experimental group and control group, respectively. Other assumptions and notations are the same as

those in Theorem 1. The covariance matrix of the MLE vector 𝜷 =
⎡⎢⎢⎣
�̂�

𝛽

𝛽𝑥

⎤⎥⎥⎦ is

var
(
𝜷
)
=

⎡⎢⎢⎢⎢⎣
𝑚𝐴𝑒𝑥𝑝 + 𝑛𝐴𝑐𝑡𝑙 𝑚𝐵𝑒𝑥𝑝 + 𝑛𝐵𝑐𝑡𝑙 𝑚𝐵𝑒𝑥𝑝

𝑚𝐵𝑒𝑥𝑝 + 𝑛𝐵𝑐𝑡𝑙 𝑚𝐶𝑒𝑥𝑝 + 𝑛𝐶𝑐𝑡𝑙 𝑚𝐶𝑒𝑥𝑝

𝑚𝐵𝑒𝑥𝑝 𝑚𝐶𝑒𝑥𝑝 𝑚𝐶𝑒𝑥𝑝

⎤⎥⎥⎥⎥⎦

−1
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝑒𝑥𝑝𝐶𝑐𝑡𝑙

𝐶𝑐𝑡𝑙 (𝐶𝑒𝑥𝑝(𝐴𝑒𝑥𝑝𝑚+𝐴𝑐𝑡𝑙 𝑛)−𝐵2𝑒𝑥𝑝𝑚)−𝐵2𝑐𝑡𝑙𝐶𝑒𝑥𝑝𝑛

𝐵𝑐𝑡𝑙𝐶𝑒𝑥𝑝

𝐶𝑐𝑡𝑙
(
𝐵2𝑒𝑥𝑝𝑚 − 𝐶𝑒𝑥𝑝

(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

))
+ 𝐵2

𝑐𝑡𝑙
𝐶𝑒𝑥𝑝𝑛

0

𝐵𝑐𝑡𝑙𝐶𝑒𝑥𝑝

𝐶𝑐𝑡𝑙
(
𝐵2𝑒𝑥𝑝𝑚 − 𝐶𝑒𝑥𝑝

(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

))
+ 𝐵2

𝑐𝑡𝑙
𝐶𝑒𝑥𝑝𝑛

𝐵2𝑒𝑥𝑝𝑚−𝐶𝑒𝑥𝑝(𝐴𝑒𝑥𝑝𝑚+𝐴𝑐𝑡𝑙 𝑛)
𝑛(𝐶𝑐𝑡𝑙 (𝐵2𝑒𝑥𝑝𝑚−𝐶𝑒𝑥𝑝(𝐴𝑒𝑥𝑝𝑚+𝐴𝑐𝑡𝑙 𝑛))+𝐵2𝑐𝑡𝑙𝐶𝑒𝑥𝑝𝑛)

𝐶𝑒𝑥𝑝
(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

)
− 𝐵𝑒𝑥𝑝

(
𝐵𝑒𝑥𝑝𝑚 + 𝐵𝑐𝑡𝑙𝑛

)
𝑛
(
𝐶𝑐𝑡𝑙

(
𝐵2𝑒𝑥𝑝𝑚 − 𝐶𝑒𝑥𝑝

(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

))
+ 𝐵2

𝑐𝑡𝑙
𝐶𝑒𝑥𝑝𝑛

)
0

𝐶𝑒𝑥𝑝
(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

)
− 𝐵𝑒𝑥𝑝

(
𝐵𝑒𝑥𝑝𝑚 + 𝐵𝑐𝑡𝑙𝑛

)
𝑛
(
𝐶𝑐𝑡𝑙

(
𝐵2𝑒𝑥𝑝𝑚 − 𝐶𝑒𝑥𝑝

(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

))
+ 𝐵2

𝑐𝑡𝑙
𝐶𝑒𝑥𝑝𝑛

) (
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

)(
𝐶𝑒𝑥𝑝𝑚 + 𝐶𝑐𝑡𝑙𝑛

)
−
(
𝐵𝑒𝑥𝑝𝑚 + 𝐵𝑐𝑡𝑙𝑛

)2
𝑚𝑛

(
𝐶𝑐𝑡𝑙

(
𝐶𝑒𝑥𝑝

(
𝐴𝑒𝑥𝑝𝑚 + 𝐴𝑐𝑡𝑙𝑛

)
− 𝐵2𝑒𝑥𝑝𝑚

)
− 𝐵2

𝑐𝑡𝑙
𝐶𝑒𝑥𝑝𝑛

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where

𝐴{⋅} =

𝐽∑
𝑘=0

𝑝{⋅},𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
𝜎2 + (𝑘 + 1)𝜎2

𝛽

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)⎫⎪⎬⎪⎭ ,

𝐵{⋅} =

𝐽∑
𝑘=0

𝑝{⋅},𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
𝜎2𝒕{𝑘} − (𝑘 + 1)𝜌𝜎𝛼𝜎𝛽

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)⎫⎪⎬⎪⎭ ,

𝐶{⋅} =

𝐽∑
𝑘=0

𝑝{⋅},𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
𝜎2𝒕2

{𝑘}
+ (𝑘 + 1)𝜎2𝛼

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)]
𝜎4 + (𝑘 + 1)𝜎2

(
𝜎2
𝛽
𝒕2
{𝑘}
+ 𝜎2𝛼 + 2𝜌𝜎𝛼𝜎𝛽𝒕{𝑘}

)
+ (𝑘 + 1)2𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

(
𝒕2
{𝑘}
− 𝒕{𝑘} 𝒕{𝑘}

)⎫⎪⎬⎪⎭ ,
with {⋅} takes the values of “𝑒𝑥𝑝” or “𝑐𝑡𝑙,” indicating subjects’ group information with “𝑒𝑥𝑝” representing the experimen-
tal/treatment group and “𝑐𝑡𝑙” representing the control group.

Proof. The proof is similar to the matrix calculation presented in A.2, and is therefore omitted. □

A.4 Corollary 1
Corollary 1. Assuming the time gap between any two consecutive assessments is ℎ, then the variance matrix (3) reduces to

var
(
𝜷
)
=

[
(𝑚 + 𝑛)𝐴† (𝑚 + 𝑛)𝐵† 𝑚𝐵†

(𝑚 + 𝑛)𝐵† (𝑚 + 𝑛)𝐶† 𝑚𝐶†

𝑚𝐵† 𝑚𝐶† 𝑚𝐶†

]−1

=

⎡⎢⎢⎢⎢⎢⎢⎣

−
𝐶†

(𝐵†2 − 𝐴†𝐶†)(𝑚 + 𝑛)

𝐵†

(𝐵†2 − 𝐴†𝐶†)(𝑚 + 𝑛)
0

𝐵†

(𝐵†2 − 𝐴†𝐶†)(𝑚 + 𝑛)
−

𝐴†𝐶†(𝑚 + 𝑛) − 𝐵†2𝑚

𝐶†(𝐵†2 − 𝐴†𝐶†)𝑛(𝑚 + 𝑛)
−
1

𝐶†𝑛

0 −
1

𝐶†𝑛

𝑚 + 𝑛

𝐶†𝑚𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
,

where 𝐽 is the maximum number of postbaseline assessments, and

𝐴† =

𝐽∑
𝑘=0

𝑝𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
12𝜎2 + ℎ2𝑘(𝑘 + 1)(𝑘 + 2)𝜎2

𝛽

]
12𝜎4 + (𝑘 + 1)𝜎2

[
2ℎ2𝑘(2𝑘 + 1)𝜎2

𝛽
+ 12𝜎2𝛼 + 12ℎ𝑘𝜌𝜎𝛼𝜎𝛽

]
+ ℎ2𝑘(𝑘 + 1)2(𝑘 + 2)𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

⎫⎪⎬⎪⎭ ,

𝐵† =

𝐽∑
𝑘=0

𝑝𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
6ℎ𝑘𝜎2 − ℎ2𝑘(𝑘 + 1)(𝑘 + 2)𝜌𝜎𝛼𝜎𝛽

]
12𝜎4 + (𝑘 + 1)𝜎2

[
2ℎ2𝑘(2𝑘 + 1)𝜎2

𝛽
+ 12𝜎2𝛼 + 12ℎ𝑘𝜌𝜎𝛼𝜎𝛽

]
+ ℎ2𝑘(𝑘 + 1)2(𝑘 + 2)𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

⎫⎪⎬⎪⎭ ,

𝐶† =

𝐽∑
𝑘=0

𝑝𝑘

⎧⎪⎨⎪⎩
(𝑘 + 1)

[
2ℎ2𝑘(2𝑘 + 1)𝜎2 + ℎ2𝑘(𝑘 + 1)(𝑘 + 2)𝜎2𝛼

]
12𝜎4 + (𝑘 + 1)𝜎2

[
2ℎ2𝑘(2𝑘 + 1)𝜎2

𝛽
+ 12𝜎2𝛼 + 12ℎ𝑘𝜌𝜎𝛼𝜎𝛽

]
+ ℎ2𝑘(𝑘 + 1)2(𝑘 + 2)𝜎2𝛼𝜎

2
𝛽
(1 − 𝜌2)

⎫⎪⎬⎪⎭ .
Proof. Using Theorem 1, the proof is fairly straightforward and therefore omitted. □
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